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1. INTRODUCTION

Let {Xt, t-O, +1, +2,...) be a discrete time series, i.e. the X t's

are a collection of random variables with finite second moments. In

analyzing time series data one usually assumes that X is covariance stationary,

i.e. the mean value function mt = E[X t] is a constant and that the covariance

function K(s,t) - Cov[X ,X t] is only a function of Is-ti. Unfortunately,

such an assumption rules out a wide class of interesting series. For

example, Figure 1 is a graph of levels of Luteinizing hormone (LH) in a

• _- cow measured at ten minute intervals for 24 hours. It is difficult to

imagine that this data comes from a covariance stationary time series. Even

if it were the usual methods of time series analysis (correlation and spectral

analysis) would not address the questions the scientist would be interested

in, namely the intensity of episodic occurrence, the average heighth of

episodes, and the rate at which the hormone level returns to its baseline

" . value.

The features that distinguish this data (and other data in a wide

variety of areas such as river flows, pollution levels, or chemical manu-

facturing processes) are the random occurrence of large surges followed by

an exponential return to the low relatively constant baseline values. A

model which reflects such behavior was suggested by Parzen (1962b). We

assume that the process started at some time zero and let the number of

episodes, N(t), from time 0 to time t, t > 0, be a Poisson process with
0

intensity parameter X, i.e. for any n > I and any times 0 4 tI < t2 < ... <t

N(tn) N(tnl, N(t2) - N(tl) are independent, Poisson distributed

random variables with means A(t - t),..., A(t2 - t1 ). Then the value

Xt of the process at time t is assumed to be of the form

Lt



x yt) y e-(t-Ti)/Y (1.1)Xt m-i

where the Y'S are iid random variables with mean vy and variance 02, while
"M y

T r is the time of occurrence of the mth episode. Thus the time series consists
m

of the sum of a random number of exponentially decaying spikes where the

number of such spikes is governed by X, their heighth by v y, and the rate

of decay by y. The aim of this paper is to provide good estimators of these

parameters. In section two we derive the properties of the model (1.1) and

in section three we find consistent, asymptotically normal estimators of A,

V y and y. In section three we will assume that y is large enough relative

to X that one spike decays quickly enough before the occurrence of the next so

that they do not overlap. This restriction seems reasonable for the type of

data sets we are interested in. We also will assume that the baseline value

is essentially constant. In many episodic time series the variation in the

baseline is of importance also. Any method of analyzing such series would

have to be iterative in nature, first considering the baseline and then the

episodes. In this paper we consider only the episodes and leave the general

problem to future research.

2. PROPERTIES OF THE MODEL

From (1.1) we can write

X N (t~l) y e- (t+l-Tm 17VNt+l t me

n~l

= y el/ye(t M)/Y+ N ym e m

m- m m-N(t)+l

- PX +t+l

t +
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where p = e and the C s are ild random variables since they are a
t

function of N(,) for the nonoverlapping time intervals (0,1], (1,2], etc.

Further, ct+l is independent of X for s < t + 1. Thus X is in the form

*. of an autoregressive process of order one but as we shall see it is not

4covariance stationary. We note that for 0 < y < -, we have 0 < p < 1.

Now for a poisson process with intensity A we have that the arrival

times Tl,.. tK in the interval [s,t] given that N(t)-N(s) = K are Lid

uniformly distributed on the inte!Yal [s,t]. Thus

E[ct] = EN(t)-N(t-I) (E[I y  tm e  m IN(t)-N(t-l) = K]

i EN(t)N(t_) [K E(y) Eu(tel t.)e M y

= EN (t)N(t-l) [Y11y Y(l-e- i)

= y y(l-e- I/Y)

where Eu(t.lt) denotes expectation with respect to the Uniform (t-l,t) pdf.

Further,

E r2N(t)-N(t-l) = = K E(y 2 )Et (t) - )Lt K] mut-,t Accession For

NTIS GRA&I
2E U t - tT/ DTIC TAB

+ K(K-1) [E(Ym)]2 L lt)(e Unannounced
Justificat ion-

K(p 2 +Cr2 ) ! (l-e - 2 / y ) + K(K-I) V2 Y2(l.e-l/Y)2 By -_
y y y Distribution/

Availability Codes
and so Avail and/or

Dist Special

E[c 2 ] = )(0 + p2) Y- (1-e - 2 / y ) + 2 y2(le-/Y). X2 Dp

t y y 2 y-.S



and

Var(EY -6 (~ 2/y)

where 6 -i. 2

Now to find the moments of X twe write

t-I t

t PPt- tl)+ t

t2 t-l~

ptX + ji
0 J. nO

Thus

EXtI= ptE[X 0+ Xy(l-e-1Y I)

0

Also, t-is-1

t t+s 0 j=o 0 J=o sJ

t-l2t+s s 2j
-p Var[X 0I + Vark tI p

2t+s Va[ (-2/y) P,( 1l t/(~2

p2t+s Va(:I+X1 p 8(1-p 2t

20 2

Var[X]-p 2tVar[X]+ X61 (1-P 2t
t 0 2

Thus X is indeed nonstationary. However, if one assumes that X has finite
0

mean and variance and then lets t go to infinity, we have



lim E[X] Au y (2.1)

lir Cov[X t , X+ s] - Y* e- s/ 7

t-->Cot

lir Var[Xt] X )62 (2.2)
t--o

and X is asymptotically covariance stationary (see Parzen (1962a)). Note

that letting t go to infinity is merely saying that we are observing the

process after it has been going on for a long time.

3. CONDITIONAL LEAST SQUARES ESTIMATORS OF DECAY RATE AND AVERAGE HEIGHT

Since X is an asymptototically stationary autoregressive process of
t

A A

order one, we can obtain consistent estimates p, y - -i/log(p), and a2

of p, y, and a2 = Vartc by choosing p as the value of p minimizing
E t

T-1
S(P) = [(Xt+- - R(xt-)

2  .1)
t=1

and letting a2 = S(p)/(T-l)
e

Unfortunately this procedure gives no information about A and y

However, it does motivate the use of conditional least squares.

If {Zt, t=O,+l,... } is an ordinary Gaussian autoregressive process of

order one, i.e. Zt = a Z 1 + Ct where E(ct) 0 and Cov(Et, s  t 2s

for the Kronecker delta function 6 , then E[ZtI Zt_I,...,Z 1] - a Zt_1
T-1

Thus the minimization of { Zt+ - a Z t2 can be thought of as minimizing
t- t

* the sum of squares of Zt+ I from its conditional expectation given all previous

Z's. If Z is not Gaussian, the procedure provides the coefficients of the

best linear approximation to this conditional expectation. In our situation

we need to actually incorporate the conditional expectation into the function

to be minimized so that estimators of X and py can be obtained. Thus we

next derive this conditional expectation.

0
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Since Xt+ I is only a function of Xt and c t+1, it is Markov and

E[X t+1 X,...,Xt] - E[Xt+Il Xt]. Further

E[Xt+lIXtl - E[pXt + ct+LI Xt]

i xt + Efe t+Ix I

But C t+l is independent of Xt so that

Eict+llXt] - E[ct+1 ] - Auiy(l-e -  )

1 Thus the conditional least squares estimators of A,Xy, and y are chosen

to minimize

T-1 e1/y -1/y 2
{xt+l - e Xt -A.y(l-e

Unfortumately A and Py only enter this function in their product and thus

they are not identifiable. However, we do have another estimator of N if

we can count how many episodes occur in our data. Thus we will assume this

is true and let A - K/T where K is the number of episodes in data Xl,...,X.

Then we let 8 - A- y and find y and 8 to minimize

T-1 _-el/y 32

S(y,) = {X +1  X -e y(l-e-fly))2  (3.2)
t-l

To find the properties of these estimators we have the following Theorem,

adapted in a straightforward way from Theorem 3.2 of Klimko and Nelson (1978).

* Theorem

The estimators y, 8 obtained by minimizing (3.2) are consistent and

*~ N(0,02 v-1

where a2 Varlt I Xi2 (1-e-2/-) , and

C ~t 2
S 4
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a 2  +s2) + 2ab~y + bacOY + bCl

bcc 2
ac~y + bc

with

a = y -2e -1/y, b = [l-y-  e-l/ (l+y)]

c y(l-e 
- I ) .

Proof Theorem 3.2 in Klimko and Nelson (1978) shows that under certain

regularity conditions that if a stochastic process X is Markov andt

asymptotically stationary and g(O) - E[X I Xt] is a function of parameters

T A

o = (81,l... er) then the conditional least squares estimators 0 of 0 based

on observations XI,... ,X r  satisfy

F -e)--N (0, -V- I- )
- r '

where the (j,k)th elements of W and V are given by

W jk= E [Xt+l - E[Xt+IXt]} 2  BE[Xt+llXt] aE[Xt+lIXt]

a ej aOk

and

J,k=l,...,r. The unconditional expectations in these expressions are the

asymptotic expectations.

4 In our situation,

aE[Xt+lIXt] = aXtl + b (3.3)

ay

E [Xt+lIXt] - c - y(l-e - /Y) (3.4)

a8

-2 -11/-Y-/
where a y e and b = [1 y e l/Y(1+y)] . Further,I
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2 2
{Xt+ I  E(Xt+lIXt]} 2  {pX + Ct+- pX t  8 y(l-e - /Y)

t~ tl t 1 t+1

t+ - t+l]}

which is independent of BE[Xt+I IXt]/aY and 3E[Xt+I IXt]/a. Then

W - a2V and thus V-1WV-1 - a2V-1 . Now from (2.1), (2.2), (3.3), and (3.4),
C C

V22 = E[c
2 1 = c2

V12 = V2 1 = E[acXtI + bc]

= acay + bc

V11 - a2E[X2 _i + 2 ab E[Xt I ] + b
2

2y (2 + B2) + 2ab~y + b2

2A2X6 +82).
~~~since E[X2_I= Var [Xtl + (E[XtI 2  P -I62 X" Y ff Y(-

To minimize the nonlinear function (3.2) we can use initial values

yfrom (3.1 ) and AP = where X K/T as above and U ris the

average of the heighths observed in the time interval containing the

start of an episode. Thus Vy will be biased downward but 8 should suffice

as a starting value for S.

To obtain asymptotically correct confidence intervals for y and 8 we

can evaluate 2 V- with a2 from (3.1 ) and A, I, y, and

-= /(XA(l-e -2/Y) replacing a 2  A, jii, y, and 6.

To obtain confidence intervals for Vy we can use the facts that

Vi = B/X, that X-X and that B is asymptotically normal. Thus py is

asymptotically normal with asymptotic variance 1/X2 times the asymptotic

variance of B.

I
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We illustrate these ideas in the next section.

4. A WORKED EXAMPLE

In table 1 we give the values of LH in a cow at 10 minute intervals for

24 hours. We note the occurrence of K=8 episodes in the T-144 points with

the episodes occurring during the 13th, 42nd, 58th, 69th, 89th, 100th, 115th,

and 132 nd time intervals. Thus we estimate A by A - K/T - 8/144 - .056

occurrences per 10 minutes or 8 per day and using the Poissoness of K, we

get an exact 90% confidence interval for AT as the interval [4.0, 14.5].

The assumption of Poisson occurrences can also be tested by (see Parzen

(1962), p. 141) comparing the statistic

K KT 618 - 576
1 M -2 1.17.58 f .6

JKT2li 12

with the critical values of the N(O, 1). Thus the LH data is clearly

consistent with the hypothesis of Poisson occurrences.

The initial estimator of y given by the ordinary autoregressive analysis

is y = 2.50 which is consistent with the observation that it takes about

8 or 10 intervals for the episode to decay back to the baseline. The initial

estimator = 20.5 and thus B = AV. 1.14. Then using the IMSL Subroutine

ZXSSQ to minimize (3.2 ), we obtain y = 2.50 and 8 = 1.90 and thus

Sy= 33.93, a considerable increase over pi

The estimator 02 of 02 = X6 I (1-e obtained from the autoregressive
C C 2*

analysis is o2 - 29.57, from which we obtain 6 =a2/[Xy/2(l-e 'T)] - 386.59.
C C

Then substituting 12, 6, A, y, and a into 02 and V, we have that y and B are
C C

approximately normal with means y and 8 and variances .00153 and .00123

S%
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respectively, from which we have asymptotic 95% confidence intervals

(2.42, 2.58) and (1.83,1.97) for y and 8 respectively. Finally the asymptotic

variance of 1y is approximately Var (0)/X2 - .39 and thus an asymptotic 95%

confidence interval for u is (32.67, 35.19).

-

.4

I

I

I
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Table 1. LH Levels Every 10 Minutes for 24 Hours

No. Val. No. Val. No. Val. No. Val. No. Val. No. Val.
1 8 25 7 49 11 73 15 97 9 121 10
2 7 26 7 50 10 74 13 98 8 122 11
3 7 27 7 51 10 75 12 99 11 123 10
4 8 28 7 52 10 76 10 100 31 124 8
5 8 29 6 53 8 77 9 101 26 125 8
6 7 30 6 54 9 78 9 102 21 126 8
7 5 31 6 55 7 79 9 103 18 127 9
8 7 32 5 56 8 80 9 104 16 128 8
9 6 33 4 57 10 81 8 105 13 129 8

10 6 34 4 58 28 82 7 106 12 130 8
11 6 35 6 59 25 83 7 107 11 131 8
12 7 36 4 60 20 84 8 108 9 132 14
13 22 37 6 61 18 85 7 109 10 133 25
14 36 38 7 62 16 86 7 110 9 134 20
15 24 39 5 63 13 87 8 il 9 135 16
16 19 40 6 64 12 88 6 112 7 136 15
17 17 41 6 65 11 89 42 113 9 137 11
18 13 42 22 66 9 90 26 114 9 138 11
19 12 43 36 67 11 91 21 115 32 139 10
20 13 44 27 68 9 92 18 116 25 140 10
21 9 45 22 69 26 93 19 117 21 141 13
22 9 46 18 70 29 94 13 118 22 142 11
23 9 47 15 71 24 95 11 119 18 143 11
24 8 48 14 72 18 96 12 120 13 144 10

FIGURE 1. Hormone Levels
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